image767

Einstein wasn’t a “lone genius” after all

  • In the history of science, perhaps no theory was as revolutionary, both immediately and long-term, as Einstein’s General Relativity. 
  • In order to incorporate gravitation into the theory of relativity, an entire new set of developments were required, and Einstein alone was incapable of making them. 
  • Instead, it was only through the idea-sharing that took place with the rest of the physics, astronomy, and mathematics community that the final theory came to be.
  • Below is as featured on https://bigthink.com/ on April 12, 2020.

Read

Perhaps the biggest myth in all of science is that of the lone genius. Someone, somewhere, with a towering intellect but no formal training wades into a field and can immediately see things that no one else has ever seen before. With just a little bit of hard work, they find solutions to puzzles that have stymied the greatest minds prior to them. And perhaps, if you had the good fortune of coming into a field just like that, you could make those great breakthroughs that the world’s greatest professionals had all missed.

That’s the myth we frequently tell ourselves about Einstein. That he, an outcast and a dropout, taught himself everything he needed to know on his own and revolutionized the field of physics in a number of ways. In the early days, his work thinking about light gave us the photoelectric effect, special relativity, and E = mc2, among other advances. Later on, his work alone gave us General Relativity, arguably his greatest achievement. All by his lonesome, Einstein single-handedly dragged the field out of Newtonian stagnation and into the 20th, and now the 21st, centuries. Here’s why that couldn’t be farther from the truth.

This 1934 photograph shows Einstein in front of a blackboard, deriving Special Relativity for a group of students and onlookers. Although Special Relativity is now taken for granted, it was revolutionary when Einstein first put it forth, and it isn’t his most famous equation; E = mc^2 is.

Yes, it’s true: back in 1905, Einstein published a series of papers that would go on to revolutionize a number of areas of physics, and we call this his “miracle year” because of those publications. But those substantial advances could hardly have been said to have occurred in a vacuum, or that Einstein in some way was an outsider to the field of physics.

Quite to the contrary, Einstein himself, although German-born, moved to Switzerland specifically to study physics and mathematics. At the age of 17, he enrolled in the mathematics and physics teaching diploma program in Zürich, where he graduated in 1900. That might not sound impressive, but today that University is known as ETH Zürich, and has had a total of 22 Nobel Laureates come through it.

Yes, it’s true that he went to work at the Swiss patent office, but was concurrently continuing his studies in Zürich at the same time. Moreover, it was his friend and classmate, Marcel Grossman, whose connections (through his father) got Einstein the job. (Grossman didn’t need it, having secured teaching positions to finance his graduate education.)

Additionally, there were a series of pieces of evidence that had been known — for decades, at that point — to go beyond what the ideas of Newton could hope to explain.

Heavy, unstable elements will radioactively decay, typically by emitting either an alpha particle (a helium nucleus) or by undergoing beta decay, as shown here, where a neutron converts into a proton, electron, and anti-electron neutrino. Both of these types of decays change the element’s atomic number, yielding a new element different from the original, and result in a lower mass for the products than for the reactants.

Newton’s Universe was deterministic. If you could take any system of particles and write down their positions, momenta, and masses, you could calculate how each and every one of them would evolve with time. With infinite calculational power, you could compute this to arbitrary precision at each and every moment in time. Maxwell’s equations brought electromagnetism into the same realm as Newtonian gravity and Newtonian mechanics. Those were the foundational pillars of physics at the time of Einstein’s birth.

Travel the Universe with astrophysicist Ethan Siegel. Subscribers will get the newsletter every Saturday. All aboard!

Fields marked with an * are required

But puzzles arose, and were well-known for those final few decades of the 1800s. Radioactivity had been discovered, and the time at which any atom would decay was known to be random. Additionally, the law of mass conservation was violated for certain radioactive decays; mass was actually lost during beta decay. It was known that objects did not obey Newton’s laws of motion when they moved close to the speed of light: time dilation and length contraction had already been discovered and described. The null results of the Michelson-Morley experiment had been robustly determined.

And, perhaps most importantly, when the precession of Mercury’s orbit was calculated in detail — accounting for the gravitation of the planets and moons as well as the periodic change in Earth’s equinoxes — it came up short of observations by a tiny but significant amount: 43 arc-seconds per century.

The hypothetical location of the planet Vulcan, presumed to be responsible for the observed precession of Mercury in the 1800s. As it turned out, Vulcan doesn’t exist, paving the way for Einstein’s General Relativity.

Yes, in 1905, Einstein made quite a splash with his series of published papers. But it’s not like he hadn’t been working and studying continuously since his graduation. His patent office work largely consisted of examining electrical and electro-mechanical devices, including the transmission of electric signals and synchronization devices. He studied physics independently with a group of physics and mathematics friends, including the works of Ernst Mach and Henri Poincaré. And, owing to his studies, he was awarded a Ph.D. from the University of Zürich for his dissertation, A new determination of molecular dimensions, with Professor Alfred Kleiner.

Einstein’s 1905 achievements, which included:

  • the discovery of Brownian motion,
  • the derivation of E = mc2 and mass-energy equivalence,
  • the discovery of the photoelectric effect,
  • and the derivation of special relativity,

were no doubt momentous, but they didn’t occur in a vacuum. Quite to the contrary, Einstein benefitted from friends, colleagues, teachers and mentors, the collaborative efforts of his first wife (whose contributions will likely never be fully known), and the input of many others during this time. His papers didn’t come out of nowhere, but rather built upon earlier ideas of Planck, Lorentz, FitzGerald, Thomson, Heaviside, Hasenöhrl, and Poincaré. In fact, Poincaré had independently derived E = mc² back in 1900; it’s possible that Einstein read that very paper as part of his study group.

https://i0.wp.com/bigthink.com/wp-content/uploads/2021/11/light_clock_anim_2.gif?resize=768,208

A light-clock, formed by a photon bouncing between two mirrors, will define time for any observer. Although the two observers may not agree with one another on how much time is passing, they will agree on the laws of physics and on the constants of the Universe, such as the speed of light. Most importantly, time always appears to run forward, never backward, and that by applying the proper relativistic physics, any observer can calculate what any other observer will experience.

But what about General Relativity? Einstein, according to the legendary stories you might have heard about him, simply had what he referred to as “his happiest thought” around 1907 or so, and the rest was history.

What was “his happiest thought,” then? It was to consider what difference there would be between an observer who was locked in a windowless room on the surface of the Earth, and experienced the force of gravity pulling everything down towards the center of the Earth, and an observer who was locked in a uniformly accelerating room in the vacuum of space.

For the observer inside, Einstein reasoned, there was no way to tell the difference between the two scenarios. Everything inside would accelerate “downward” at 9.8 m/s2; the floor would push “upward” with a restoring, normal force to balance the downward pull; even light, if shone from one end of the room to the other, would travel in a curved path as dictated by either acceleration or gravitation. Known today as Einstein’s equivalence principle, it provided the conceptual link between motion, which was described by his (earlier, developed in 1905) theory of special relativity, and gravitation, which up until that point was a purely Newtonian phenomenon.

The identical behavior of a ball falling to the floor in an accelerated rocket (left) and on Earth (right) is a demonstration of Einstein’s equivalence principle. If inertial mass and gravitational mass are identical, there will be no difference between these two scenarios. This has been verified to ~1 part in one trillion for matter, but has never been tested for antimatter.

But even with this, Einstein was not operating in a vacuum at all. Einstein’s former professor during his undergraduate days, Hermann Minkowski, became enamored with special relativity, and was shocked that the same Einstein he had taught had developed it. “For me it came as a tremendous surprise, for in his student days Einstein had been a real lazybones. He never bothered about mathematics at all,” Minkowski wrote, but then it was Minkowski who developed the idea of spacetime based upon Einstein’s work. By placing space and time on the same mathematical footing, he set the stage for the mathematical development of General Relativity.

Conceptually, Einstein’s “happiest thought” may have been preceded by some fascinating work by Henri Poincaré. Poincaré realized that Mercury’s orbit didn’t only require corrections for Earth’s precessing equinoxes and the gravitational influence of the other bodies in the Solar System, but also for the fact that, as the fastest planet, Mercury’s velocity with respect to the speed of light could not be neglected. With the advent of special relativity, he realized that Mercury would experience dilated time, and that there would be length contraction in the direction of its motion around the Sun. When he applied special relativity to the orbit of Mercury, he found that he could account for about ~20% of the observed extra precession just by adding in that one effect.

https://i0.wp.com/bigthink.com/wp-content/uploads/2021/12/ezgif-4-59b39b6c2490.gif

This illustration shows the precession of a planet’s orbit around the Sun. A very small amount of precession is due to General Relativity in our Solar System; Mercury precesses by 43 arc-seconds per century, the greatest value of all our planets. Elsewhere in the Universe, OJ 287’s secondary black hole, of 150 million solar masses, precesses by 39 degrees per orbit, a tremendous effect!

How, then, would it be possible to construct a physical theory that married gravitation to this new concept of spacetime, explain the precession of Mercury’s orbit, incorporate special relativity, and still be able to reproduce all of the earlier centuries of success that Newtonian gravity had?

It wasn’t Einstein’s idea at all, but rather that of his friend and former classmate, Marcel Grossman. While Einstein had the idea of the equivalence principle, it was Grossman who had the idea to describe the Universe with non-Euclidean geometry as its spacetime fabric.

After all, this was Grossman’s specialty: Riemannian geometry, where two parallel lines did not necessarily always remain parallel, but could converge and meet or diverge and get farther and farther apart, as dictated by the underlying geometry. Differential geometry and tensor calculus were precisely the language required to describe the Universe that Einstein was trying to picture, and Grossman was the one who put it all together. The paper, Outline of a Generalized Theory of Relativity and of a Theory of Gravitation, was the first of two fundamental papers that would establish General Relativity as the theory of gravity.

Countless scientific tests of Einstein’s general theory of relativity have been performed, subjecting the idea to some of the most stringent constraints ever obtained by humanity. Einstein’s first solution was for the weak-field limit around a single mass, like the Sun; he applied these results to our Solar System with dramatic success. Very quickly, a handful of exact solutions were found thereafter.

But even this specialty was not unique to Grossman and, through him, Einstein. Absolute differential calculus, as a field, had been introduced by Elwin Christoffel in 1869 and was only recently, at the time, completed by Gregorio Ricci and Tullio Levi-Civita in 1900. (These last names will be familiar to anyone who’s studied General Relativity.) There were numerous mathematicians studying precisely this field at the time, and one of them, the legendary David Hilbert, almost arrived at the equations that would describe gravitation in the Universe before Einstein did.

In every physical theory where you have mechanical motion, there’s a thing you can define — the action — that must be minimized in order to figure out what the path of that object will be. In Newtonian mechanics, it was Hamilton’s principle of least action that led to the equations of motion; in the context of a general theory of relativity, a new action principle would have to be discovered. That action principle was formulated independently by both Einstein and by Hilbert at around the same time, and is today known as the Einstein-Hilbert action. It’s this action principle, when correctly applied to the physics of the system, that leads to the modern Einstein field equations.

A mural of the Einstein field equations, with an illustration of light bending around the eclipsed sun, the observations that first validated general relativity back in 1919. The Einstein tensor is shown decomposed, at left, into the Ricci tensor and Ricci scalar. Novel tests of new theories, particularly against the differing predictions of the previously prevailing theory, are essential tools in scientifically testing an idea.

None of this is to diminish the genius of Einstein, nor to take credit away from him for the breakthroughs that he himself made. Rather, these stories are to better provide context as to how these great advances were made. Einstein was not, as the common narrative often goes, a lone genius who was working outside of the strict confines of academia, who was able to revolutionize the field precisely because he was an outsider, unconfined by the dogmatic and restrictive teachings of his day.

Rather, it was precisely because Einstein had the education and background that he did — his own unique toolkit, as it were — that he was able to approach this variety of problems in a self-consistent, non-contradictory way. It was because of his friends and collaborators that he was exposed to ideas that helped him to progress, rather than stagnate. And it was because of his willingness and even eagerness to rely on the input and expertise of others, and to take inspiration from them and incorporate it into his own work, that his excellent ideas, many of which were profound but were mere seeds, were able to sprout into the towering achievements we reflect upon today.

https://i0.wp.com/bigthink.com/wp-content/uploads/2021/11/ezgif-5-014fc9ef71.gif

Last year, I wrote an essay entitled, What if Einstein never existed? At the end, I contrasted the narrative of the lone genius with the attempts made to solve many of the outstanding problems of their time by other, less heralded scientists, and found that most advances would have occurred even without the person who made the key breakthrough. Georges Lemaître and Howard Robertson each put together the expanding Universe independently of Edwin Hubble. Sin-Itiro Tomonaga worked out quantum electrodynamics independently of both Julian Schwinger and Richard Feynman. Robert Brout and Alexei Starobinskii each published papers with key realizations concerning what we now know as cosmic inflation well before Alan Guth’s revolutionary paper.

What would the world have been like without Einstein? Would we ever have had General Relativity? I think the answer, without a doubt, is yes. Many others, even at the time, were close behind him. And without listening to the inputs of the world-class minds around him, Einstein wouldn’t have had anywhere near the successes or the impact that he did. Although our culture loves soundbites, with perhaps the most famous from Einstein being, “imagination is more important than knowledge,” these sorts of advances absolutely require both. Regardless of the ratio of “inspiration” to “perspiration” required, there’s simply no way around the need, if you want to make a meaningful advance, for expertise and hard work.

5

James Dyson Created 5,127 Versions of a Product That Failed Before Finally Succeeding. His Tenacity Reveals a Secret of Entrepreneurship.

  • Sometimes wrong turns are what lead you to success.
  • Below is as featured on www.entrepreneur.com/ May 23, 2022.

Read

“Failure is interesting — it’s part of making progress. You never learn from success, but you do learn from failure.”

James Dyson, British inventor

Imagine spending five years of your life creating 5,127 versions of a product that failed. That’s exactly what the inventor of cyclonic vacuum technology, James Dyson did. Until finally, one magical day, he hit gold — finally succeeding in creating the world’s first bagless vacuum cleaner.

In some ways, entrepreneurship can seem like a type of madness — not unlike the obsessiveness that overtakes artists. But in Dyson’s case, his patience and persistence eventually led to payoff: a multi-billion dollar company known for its creativity and forward-thinking designs.

Today, the Dyson vacuum cleaner is sold in more than 65 countries worldwide. In an interview with Entrepreneurthe inventor explained how he was able to accept a long series of failures without letting frustration overwhelm him. “We have to embrace failure and almost get a kick out of it,” he noted. “Not in a perverse way, but in a problem-solving way. Life is a mountain of solvable problems, and I enjoy that.”

Learning means being okay with not having all the answers

We live in a rapid-paced society where we access information with the click and point of our finger — which means we absorb data at an unprecedented velocity. You can ask me a question this instant and I will take out my smartphone and spew out random facts.

But is this…actually learning?

Sure, we can access Wikipedia and feel like we’ve become experts on a topic.

But true, legitimate learning doesn’t come with ease. I am not advocating you quit researching things online (reading from reputable sources does expand our mind). What I do want is to rid ourselves of this false notion that learning is separate from discomfort.

Failing is painful, it makes you insecure and doubt everything. I know a little about this myself, because I’ve spent 16 years growing a business that has been met with many stumbles along the way.

But here’s the secret to entrepreneurship few will say: You have to fall in love with failing. You have to fall in love with your hunger for learning, for discovery, for being an inventor.

I am a person who enjoys taking long hikes in nature alone. I’ve gotten lost on the wrong tracks more times than I can count. But the process of finding the right way out — of learning that there are many paths that can lead us to the right outcome, it’s a lesson that stays with me both in my career and in my personal life.

I’d like to share some practical tips I’ve learned from experts and my own experience to help you become a life-long learner unafraid of making a wrong turn.

1. Cultivate the passion of the explorer

Harvard Business Review contributor John Hagell III wanted to get to the core of what motivates lifelong learners. What he discovered in his research is that rather than fear being an incentive for learning, it was those individuals who exhibited a “passion of the explorer” who were able to learn and grow.

“Explorers have a long-term commitment to achieving impact in a specific domain that excites them,” hewrites. “Anything from factory work or financial services to gardening or big wave surfing.”

Hagel believes we all have the potential for this form of passion. “Go to a playground and watch children 5-6 years old. They have all of the elements required: curiosity, imagination, creativity, and a willingness to take risks, and connect with others.”

Doing this in practice, however, can seem tricky. The fear of making a mistake is so ingrained in us. But it’s possible to make these adjustments in our daily lives by making a conscious choice to experiment, test out new possibilities and adapt along the way.

The way of the explorer is to be comfortable with the unknown — because their curiosity surpasses their fears.

2. Practice questioning the status quo

I’ve offered Dyson as an example of someone taking years to perfect his product — but I should also offer myself as an example. One of our latest products, Jotform Tables, which allows teams to collect, organize, and manage data in an all-in-one workspace — took us a whopping three years to develop.

So I am well aware of what it means to relentlessly pursue a vision.

But so much of this process started out and evolved by resetting our status quo and in asking ourselves, What else is possible? How might we make our customer’s lives even easier?

HBR co-authors Helen Tupper and Sarah Ellis advocate for making learning a part of our daily routine, and part of that involves asking propelling questions to explore different ways of doing things. Here are some examples the researchers recommend asking both of ourselves and our teams:

  • Imagine it’s 2030. What three significant changes have happened in your industry?
  • Which of your strengths would be most useful if your organization doubled in size?
  • If you were rebuilding this business tomorrow, what would you do differently?

3. Embrace the growing pains of relearning

It isn’t only failure that brings discomfort. At times it’s being swept up in the changing tides we have no control over. If we’ve learned anything from this pandemic, it’s that we’ve had to relearn how to do things in nearly every domain of our lives — parenting, communicating over Zoom, managing the endless fatigue of an ongoing crisis.

But these growing pains aren’t all bad, according to HBR co-authors Tupper and Ellis. “Relearning is recognizing that how we apply our strengths is always changing and that our potential is always a work in progress,” they note. “We need to regularly reassess our abilities and how they need to be adapted for our current context.”

So, how do we remain nimble in the face of change? A few things that have worked for me: counting every small success at the end of each day (even writing it down as a reminder), maintaining my focus on what’s working well and continuously being open to feedback.

For me, spending years on prototypes isn’t just about tenacity; it’s a question of faith. And it’s this faith that gives us the courage, confidence and hope to persevere against all odds.

Entrepreneur Editors’ Picks

2

These energy innovations could transform how we mitigate climate change, and save money in the process – 5 essential reads

Read

To most people, a solar farm or a geothermal plant is an important source of clean energy. Scientists and engineers see that plus far more potential.

They envision offshore wind turbines capturing and storing carbon beneath the sea, and geothermal plants producing essential metals for powering electric vehicles. Electric vehicle batteries, too, can be transformed to power homes, saving their owners money and also reducing transportation emissions.

With scientists worldwide sounding the alarm about the increasing dangers and costs of climate change, let’s explore some cutting-edge ideas that could transform how today’s technologies reduce the effects of global warming, from five recent articles in The Conversation.

1. Solar canals: Power + water protection

What if solar panels did double duty, protecting water supplies while producing more power?

California is developing the United States’ first solar canals, with solar panels built atop some of the state’s water distribution canals. These canals run for thousands of miles through arid environments, where the dry air boosts evaporation in a state frequently troubled by water shortages.

“In a 2021 study, we showed that covering all 4,000 miles of California’s canals with solar panels would save more than 65 billion gallons of water annually by reducing evaporation. That’s enough to irrigate 50,000 acres of farmland or meet the residential water needs of more than 2 million people,” writes engineering professor Roger Bales of the University of California, Merced. They would also expand renewable energy without taking up farmable land.

Other countries including China and India are also testing the solar farms over water. Solar Aquagrid LLC, CC BY-ND

Research shows that human activities, particularly using fossil fuels for energy and transportation, are unequivocally warming the planet and increasing extreme weather. Increasing renewable energy, currently about 20% of U.S. utility-scale electricity generation, can reduce fossil fuel demand.

Putting solar panels over shaded water can also improve their power output. The cooler water lowers the temperature of the panels by about 10 degrees Fahrenheit (5.5 Celsius), boosting their efficiency, Bales writes.


Read more: First solar canal project is a win for water, energy, air and climate in California

2. Geothermal power could boost battery supplies

For renewable energy to slash global greenhouse gas emissions, buildings and vehicles have to be able to use it. Batteries are essential, but the industry has a supply chain problem.

Most batteries used in electric vehicles and utility-scale energy storage are lithium-ion batteries, and most lithium used in the U.S. comes from Argentina, Chile, China and Russia. China is the leader in lithium processing.

Geologist and engineers are working on an innovative method that could boost the U.S. lithium supply at home by extracting lithium from geothermal brines in California’s Salton Sea region.

Brines are the liquid leftover in a geothermal plant after heat and steam are used to produce power. That liquid contains lithium and other metals such as manganese, zinc and boron. Normally, it is pumped back underground, but the metals can also be filtered out.

“If test projects now underway prove that battery-grade lithium can be extracted from these brines cost effectively, 11 existing geothermal plants along the Salton Sea alone could have the potential to produce enough lithium metal to provide about 10 times the current U.S. demand,” write geologist Michael McKibben of the University of California, Riverside, and energy policy scholar Bryant Jones of Boise State University.

President Joe Biden invoked the Defense Production Act on March 31, 2022, to provide incentives for U.S. companies to mine and process more critical minerals for batteries.


Read more: How a few geothermal plants could solve America’s lithium supply crunch and boost the EV battery industry


3. Green hydrogen and other storage ideas

Scientists are working on other ways to boost batteries’ mineral supply chain, too, including recycling lithium and cobalt from old batteries. They’re also developing designs with other materials, explained Kerry Rippy, a researcher with the National Renewable Energy Lab.

Concentrated solar power, for example, stores energy from the sun by heating molten salt and using it to produce steam to drive electric generators, similar to how a coal power plant would generate electricity. It’s expensive, though, and the salts currently used aren’t stable at higher temperature, Rippy writes. The Department of Energy is funding a similar project that is experimenting with heated sand.

Renewable fuels, such as green hydrogen and ammonia, provide a different type of storage. Since they store energy as liquid, they can be transported and used for shipping or rocket fuel.

Hydrogen gets a lot of attention, but not all hydrogen is green. Most hydrogen used today is actually produced with natural gas – a fossil fuel. Green hydrogen, in contrast, could be produced using renewable energy to power electrolysis, which splits water molecules into hydrogen and oxygen, but again, it’s expensive.

“The key challenge is optimizing the process to make it efficient and economical,” Rippy writes. “The potential payoff is enormous: inexhaustible, completely renewable energy.”


Read more: These 3 energy storage technologies can help solve the challenge of moving to 100% renewable electricity


4. Using your EV to power your home

Batteries could also soon turn your electric vehicle into a giant, mobile battery capable of powering your home.

Only a few vehicles are currently designed for vehicle-to-home charging, or V2H, but that’s changing, writes energy economist Seth Blumsack of Penn State University. Ford, for example, says its new F-150 Lightning pickup truck will be able to power an average house for three days on a single charge.

Blumsack explores the technical challenges as V2H grows and its potential to change how people manage energy use and how utilities store power.

For example, he writes, “some homeowners might hope to use their vehicle for what utility planners call ‘peak shaving’ – drawing household power from their EV during the day instead of relying on the grid, thus reducing their electricity purchases during peak demand hours.”


Read more: Can my electric car power my house? Not yet for most drivers, but vehicle-to-home charging is coming


5. Capturing carbon from air and locking it away

Another emerging technology is more controversial.

Humans have put so much carbon dioxide into the atmosphere over the past two centuries that just stopping fossil fuel use won’t be enough to quickly stabilize the climate. Most scenarios, including in recent Intergovernmental Panel on Climate Change reports, show the world will have to remove carbon dioxide from the atmosphere, as well.

The technology to capture carbon dioxide from the air exists – it’s called direct air capture – but it’s expensive.

Engineers and geophysicists like David Goldberg of Columbia University are exploring ways to cut those costs by combining direct air capture technology with renewable energy production and carbon storage, like offshore wind turbines built above undersea rock formations where captured carbon could be locked away.

The U.S. had seven operating offshore wind turbines with 42 megawatts of capacity in 2021. The Biden administration’s goal is 30,000 megawatts by 2030. AP Photo/Michael Dwyer

The world’s largest direct air capture plant, launched in 2021 in Iceland, uses geothermal energy to power its equipment. The captured carbon dioxide is mixed with water and pumped into volcanic basalt formations underground. Chemical reactions with the basalt turn it into a hard carbonate.

Goldberg, who helped developed the mineralization process used in Iceland, sees similar potential for future U.S. offshore wind farms. Wind turbines often produce more energy than their customers need at any given time, making excess energy available.

“Built together, these technologies could reduce the energy costs of carbon capture and minimize the need for onshore pipelines, reducing impacts on the environment,” Goldberg writes.


Read more: Offshore wind farms could help capture carbon from air and store it long-term – using energy that would otherwise go to waste